
LA-UR-20-26335
Approved for public release; distribution is unlimited.

Title: Fortran Language Compatibility Library for Kokkos

Author(s): Womeldorff, Geoffrey Alan
Gaspar, Andrew James
Halverson, Scot Alan

Intended for: Performance, Portability, and Productivity in HPC Forum (P3HPC),
2020-09-01/2020-09-02 (Online, New Mexico, United States)

Issued: 2020-08-17

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Instead of the

screen while your

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Title Slide, display

in Slide, you

logo/management

use one of the two

Los Alamos National Laboratory

Fortran Language Compatibility Library
for Kokkos

Geoff Womeldorff, Andrew Gaspar,
Scot Halverson

9/1/2020

Performance, Portability, and Productivity in HPC
(P3HPC) Forum

LA-UR-19-XXXXX

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory

9/1/2020 | 4

Talk Structure

• BLUF
• Motivation
• Incremental Porting on Hosts

• Memory Allocated by Fortran
• Usage Example

• Incremental Porting on Hosts and Devices
• DualViews
• Usage Examples

• Conclusions
• Open Source
• Future Ideas

Los Alamos National Laboratory

9/1/2020 | 5

Bottom Line Up Front

• Wrappers to allow Fortran memory to be used as Kokkos Views
• (1D, 2D, …,7D) x (real, integer, complex) x (32,64), (also logical!)

• Routines to allocate memory with Kokkos from Fortran
• (1D, 2D, 3D)x(real, integer)x(32,64), (also logical!)

• Lots of compatibility testing
• x86 x gnu x 7.4 x (serial, openmp, cuda) x (release, debug) x (3.0, 3.1)
• x86 x intel x (19,20) x (serial, openmp) x (release, debug) x (3.0, 3.1)
• ppc x gnu x 7.4 x (serial, openmp, cuda) x (release, debug) x (3.0, 3.1)
• ppc x XL x 16 x serial x (release, debug) x (3.0, 3.1)

• Open source: https://github.com/kokkos/kokkos-fortran-interop

Los Alamos National Laboratory

9/1/2020 | 6

Motivation

• HPC world owns many Fortran LOC!
• Which we use every day! And is not going anywhere!

• But we generally cannot port it all at once.
• Thus we need an incremental porting strategy
• Keep our e.g. Fortran mains, drivers, physics packages

• But port relevant infrastructure, or hotspot kernels to C++
• But C++ doesn’t have multi-dimensional arrays as first class citizens!
• So we chose Kokkos for its Views which gives us `everything’ from

Fortran arrays, plus first-class knowledge of memory spaces

Los Alamos National Laboratory

9/1/2020 | 7

Fortran Language Compatibility Layer (FLCL)

• Our open-source contribution to the Kokkos ecosystem. Features:
• Fortran compatible types for Kokkos View and DualViews, and routines for

their allocation and deallocation, to share memory allocated from C++ to
Fortran and C++ kernels.

• Structs and helper routines to use Fortran memory from C++ kernels.
• Unit tests testing and examples using above.
• Utility routines for interfacing with Kokkos from Fortran.
• CI-like scripts for testing against various configurations of Kokkos library

and compiler families.

• See: https://github.com/kokkos/kokkos-fortran-interop

Los Alamos National Laboratory

9/1/2020 | 8

Incremental Porting on Hosts

• Memory Allocated by Fortran
• Initialization/Finalization of Kokkos
• Usage Example

Los Alamos National Laboratory

9/1/2020 | 9

Memory Allocated by Fortran

• Motivated by the particular scenario of incrementally porting kernels,
or infrastructure (e.g MPI), but only running on host-based systems

• We’re not re-writing the mains/drivers for our codes.
• So – how best to share a chunk of memory across an ABI?

• Our answer – recreate most of Fortran’s dope vector.
• Then share that recreation across the ABI.
• And on the far side, wrap things up in a Kokkos View.

• Then we have access to all of the very useful features of Kokkos with
respect to parallel execution, and a convenient multidimensional
access to memory.

Los Alamos National Laboratory

9/1/2020 | 10

nd_array_t

• nd_array_t keeps track of:
• an array’s rank
• dimensions per rank
• strides per rank
• pointer to the beginning of the memory allocation

• How do we populate an nd_array_t?
• A routine called: to_nd_array_(l|i32|i64|r32|r64|c32|c64)_(1|2|3|4|5|6|7)d
• That’s a little verbose, so thankfully we can wrap it up in an interface and

just call: result = to_nd_array(foo)
• Where foo is a Fortran array and result is an nd_array_t

Los Alamos National Laboratory

9/1/2020 | 11

nd_array_t

• Rank is inferred from the dummy argument’s rank.
• Each rank’s dimension can be read via size()
• Stride is a little trickier, but we settled on taking the difference

between successive elements in each rank.
• This avoids the need for the CONTIGUOUS attribute. (And thus a copy, if

it’s not already true!)
• Pointer to data is straightforward, as well.

Los Alamos National Laboratory

9/1/2020 | 12

Initializing and finalizing Kokkos

• Think of this as a once per program operation. Similar to
MPI_Init/MPI_Finalize.
• Generally, we call Kokkos::Initialize() directly after MPI_Init, and

Kokkos::Finalize() directly before MPI_Finalize.
• In FLCL, we provide:

• kokkos_initialize() (this version parses command line Kokkos arguments)
• kokkos_initialize_without_args()
• kokkos_finalize()

• See: https://github.com/kokkos/kokkos/wiki/Initialization

Los Alamos National Laboratory

9/1/2020 | 13

Usage Example

• How about an AXPY? Everyone loves the AXPY.
program example_axpy
use, intrinsic :: iso_c_binding
use :: flcl_mod
use :: axpy_f_mod

implicit none

real(c_double), dimension(:), allocatable :: c_y
real(c_double), dimension(:), allocatable :: x
real(c_double) :: alpha
integer :: mm = 5000

... setup here ...

call kokkos_initialize()
call axpy(c_y, x, alpha)
call kokkos_finalize()

end program example_axpy

Los Alamos National Laboratory

9/1/2020 | 14

Usage Examples

• The axpy() we call from our main.
module axpy_f_mod

use, intrinsic :: iso_c_binding
use :: flcl_mod
public
interface
subroutine f_axpy ...

end interface

contains

subroutine axpy(y, x, alpha)
use, intrinsic :: iso_c_binding
use :: flcl_mod
implicit none
real(c_double), dimension(:), intent(inout) :: y
real(c_double), dimension(:), intent(in) :: x
real(c_double), intent(in) :: alpha
call f_axpy(to_nd_array(y), to_nd_array(x), alpha)

end subroutine axpy
end module axpy_f_mod

Los Alamos National Laboratory

9/1/2020 | 15

Usage Examples

• The binding we invoke from our axpy()

module axpy_f_mod
use, intrinsic :: iso_c_binding
use :: flcl_mod
public
interface
subroutine f_axpy(nd_array_y, nd_array_x, alpha) &
& bind(c, name='c_axpy')
use, intrinsic :: iso_c_binding
use :: flcl_mod
type(nd_array_t) :: nd_array_y
type(nd_array_t) :: nd_array_x
real(c_double) :: alpha

end subroutine f_axpy
end interface

contains
subroutine axpy ...

end module axpy_f_mod

Los Alamos National Laboratory

9/1/2020 | 16

Usage Examples

• The C++ implementation of AXPY we ultimately invoke.
#include "flcl-cxx.hpp"
extern "C" {
void c_axpy(flcl_ndarray_t *nd_array_y,

flcl_ndarray_t *nd_array_x,
double *alpha)

{
using flcl::view_from_ndarray;

auto y = view_from_ndarray<double*>(*nd_array_y);
auto x = view_from_ndarray<double*>(*nd_array_x);

Kokkos::parallel_for("axpy", y.extent(0), KOKKOS_LAMBDA(const size_t idx)
{
y(idx) += *alpha * x(idx);

});

return;
}

}

Los Alamos National Laboratory

9/1/2020 | 17

Usage Example

• More details:
• https://github.com/kokkos/kokkos-fortran-interop/tree/master/examples/01-

axpy
• More examples:

• https://github.com/kokkos/kokkos-fortran-interop/tree/master/examples

https://github.com/kokkos/kokkos-fortran-interop/tree/master/examples/01-axpy
https://github.com/kokkos/kokkos-fortran-interop/tree/master/examples

Los Alamos National Laboratory

9/1/2020 | 18

Incremental Porting on Hosts and Devices

• DualViews
• Usage Examples

Los Alamos National Laboratory

9/1/2020 | 19

DualViews

• A Kokkos DualView is a view that has a backing memory allocation
on both a Host and Device.

• Motivation for using one is that we want to give Fortran access to
more exotic memory spaces in an incremental way.

• And that if possible, we would like the same user-facing
implementation for multiple platforms.

• If we use DualView, we can write our kernels such that they use the
device memory, and the right thing will happen on host-only
platforms.

Los Alamos National Laboratory

9/1/2020 | 20

kokkos_allocate_dualview

• kokkos_allocate_dualview_(l|i32|i64|r32|r64)_(1|2|3)d
• Accepts as input

• a Fortran pointer (to hold the View’s host data)
• an opaque pointer to the View (for scope)
• a string to populate the View’s label
• extents, one per dimension

Los Alamos National Laboratory

9/1/2020 | 21

kokkos_allocate_dualview code flow

• A little more complicated than just wrapping up Fortran memory
• kokkos_allocate_dualview() (matched to type/rank)

• Invokes a matching f_kokkos_allocate_dualview()
• Which is bound to a matching c_kokkos_allocate_dualview()

• Which stringifies a Fortran char array
• Creates a matching type/rank DualView with the stringified label
• And sets a temporary passed-in pointer to DualView’s h_view.data()

• Then we wrap up the Fortran pointer using c_f_pointer()
• Now we have a Fortran accessible DualView.

Los Alamos National Laboratory

9/1/2020 | 22

Usage Examples

• Let’s walk through allocating a DualView from Fortran
• First we start in some application specific wrapper:

! allocate 'physics arrays'
real(c_double), dimension(:), pointer :: array_x
real(c_double), dimension(:), pointer :: array_y
type(c_ptr) :: v_x
type(c_ptr) :: v_y
... setup here ...

call kokkos_allocate_dualview(array_x, v_x, ”array_x", length)
call kokkos_allocate_dualview(array_y, v_y, ”array_y", length)

Los Alamos National Laboratory

9/1/2020 | 23

Usage Examples

• Which goes through an interface and selects
kokkos_allocate_dualview_r64_1d()
subroutine kokkos_allocate_dualview_r64_1d(A, v_A, n_A, e0)
use, intrinsic :: iso_c_binding
implicit none
real(REAL64), pointer, dimension(:), intent(inout) :: A
type(c_ptr), intent(out) :: v_A
character(len=*), intent(in) :: n_A
integer(c_int), intent(in) :: e0
type(c_ptr) :: c_A

character(len=:, kind=c_char), allocatable, target :: f_label
call char_add_null(n_A, f_label)
call f_kokkos_allocate_dualview_r64_1d(c_A, v_A, c_loc(f_label), e0)
call c_f_pointer(c_A, A, shape=[e0])

end subroutine kokkos_allocate_dualview_r64_1d

Los Alamos National Laboratory

9/1/2020 | 24

Usage Examples

• f_kokkos_allocate_dualview_r64_1d() just exists to bind to its C
counterpart.

interface
subroutine f_kokkos_allocate_dualview_r64_1d(c_A, v_A, n_A, e0) &
bind (c, name='c_kokkos_allocate_dualview_r64_1d’)
use, intrinsic :: iso_c_binding
implicit none
type (c_ptr), intent(out) :: c_A
type (c_ptr), intent(out) :: v_A
type (c_ptr), intent(in) :: n_A
integer (c_int), intent(in) :: e0

end subroutine f_kokkos_allocate_dualview_r64_1d
end interface

Los Alamos National Laboratory

9/1/2020 | 25

Usage Examples

• The actual allocation then happens.

void c_kokkos_allocate_dualview_r64_1d(double** A,
dualview_r64_1d_t** v_A,
const char** f_label,
const int* e0)

{
const int e0t = std::max(*e0, 1);
std::string c_label(*f_label);
*v_A = (new dualview_r64_1d_t(c_label, e0t));
*A = (*v_A)->h_view.data();

}

Los Alamos National Laboratory

9/1/2020 | 26

Usage Examples

• Finally back here, where we call c_f_pointer so that A wraps around
h_view.data()
subroutine kokkos_allocate_dualview_r64_1d(A, v_A, n_A, e0)
use, intrinsic :: iso_c_binding
implicit none
real(REAL64), pointer, dimension(:), intent(inout) :: A
type(c_ptr), intent(out) :: v_A
character(len=*), intent(in) :: n_A
integer(c_int), intent(in) :: e0
type(c_ptr) :: c_A

character(len=:, kind=c_char), allocatable, target :: f_label
call char_add_null(n_A, f_label)
call f_kokkos_allocate_dualview_r64_1d(c_A, v_A, c_loc(f_label), e0)
call c_f_pointer(c_A, A, shape=[e0])

end subroutine kokkos_allocate_dualview_r64_1d

Los Alamos National Laboratory

9/1/2020 | 27

Usage Examples

• For a usage example which is a little more complex, see a mesh
operations proxy which usages FLCL / DualViews:

• https://github.com/lanl/xkt

• In addition, while we show DualView in this section, we also have a
version which uses just Views. This would be fine for CPU-based
systems, but for GPU-based/accelerator-based systems requires
some sort of UVM / coherent memory interface. Both are useful, but
be aware of design constraints.

https://github.com/lanl/xkt

Los Alamos National Laboratory

9/1/2020 | 28

Conclusions

• Open Source
• Future Work

Los Alamos National Laboratory

9/1/2020 | 29

Open Source

• We released these ideas as open source.
• We want our lessons learned to be shared with the broader HPC

community (and others).
• We `dogfood’ this method in production, so it is battle-tested.

• But, we’re not omniscient.
• So, we’re happy to have help and new ideas!
• Please feel free to file issues and/or merge requests:
• https://github.com/kokkos/kokkos-fortran-interop

• Development is somewhat interrupt driven, so requirements for new
features truly do matter.

https://github.com/kokkos/kokkos-fortran-interop

Los Alamos National Laboratory

9/1/2020 | 30

Future Work

• We see the need for some fashion of memory manager on device-
compute based systems.
• For as long as host and device memories are not equal on a node.
• UMPIRE is one choice (moreso, as Kokkos and RAJA become more

compatible) (see Jeff Miles work to integrate UMPIRE into Kokkos)

Los Alamos National Laboratory

9/1/2020 | 31

Thanks

• We would like to thank ISO_C_BINDING for letting us do all of this in
a standard way. Thank you, ISO_C_BINDING!

Los Alamos National Laboratory

9/1/2020 | 32

Thank you! Questions?

Thank you for listening!

If you have questions, please ask – womeld@lanl.gov, file an issue on
github, or ask on the Kokkos slack.

mailto:womeld@lanl.gov

Los Alamos National Laboratory

9/1/2020 | 33

Backup Slides

Los Alamos National Laboratory

9/1/2020 | 34

Usage Examples : Safety Features

Los Alamos National Laboratory

9/1/2020 | 35

FortranIndex<T>

• EAP has LOTS of indirection arrays
• This means dealing with LOTS of index lists
• And if you want to share these index lists without a copy between

Fortran and C++…

• It means dealing with a lot of 1-based indices

Los Alamos National Laboratory

9/1/2020 | 36

FortranIndex<T>
Motivation

• As we’ve shown, arrays can be shared between C++ and Fortran
• Those arrays are, for better or worse, 0-based in C++ and 1-based

Fortran
• However, indices don’t get mapped in this way!
• Easy to mess-up: when porting a kernel, you have to manually “fix” 1-

based indices
• Separate 0-based copy of index arrays is not feasible:

• Easy for these arrays to end up out of sync, leading to hard to debug
problems

• Additional O(num_cell) allocations quickly add up

Los Alamos National Laboratory

9/1/2020 | 37

What is FortranIndex<T>?

LOGICALLY 0-based indexes

Kokkos::View<FortranIndex<int32_t> *> x = {2, 5, 6, 3};

REPRESENTATIONALLY 1-based indexes

integer(INT32) :: x(:) = [3, 6, 7, 4]

Los Alamos National Laboratory

9/1/2020 | 38

FortranIndex<T>

• C++ custom type
• Same size and layout as type T, where T is an integer type
• Internally stores integer value of type T by an offset of 1
• Works in non-host Kokkos execution and memory spaces
• ”Looks” like any integer

• Assignment operators (including =, +=, -=, etc.) overloaded
• Converts to other integer types, like a normal integer
• Impossible to observe “internal” value without reinterpret_cast

• Benchmark/Code-gen
• Literally just an additional inc/dec
• No overhead vs. explicit ”- 1” (in my testing!)

Los Alamos National Laboratory

9/1/2020 | 39

Getting the Views to the right place, when Fortran
knows nothing about them

• But, when we want to run a device-based kernel, how do ask Fortran
to convey which View(s) we want it to use?
• Assuming of course, we have some physics-motivated code which passes

around multi-dimensional arrays (raise your hand if you’re like us!)
• We spit-balled a few different ideas, and implemented one of them

• The first, is some sort struct or dictionary which would hold a list of View
pointers
• Used to passing around some blob of state, so this would be one more thing to

add to that
• The second, a hashing between the Fortran pointers and the DualView

pointers
• A little more automatic!

Los Alamos National Laboratory

9/1/2020 | 40

Usage Examples

• What if we add a bookkeeping hashmap to our allocation routine?

void c_kokkos_allocate_dualview_r64_1d(double** A,
dualview_r64_1d_t** v_A,
const char** f_label,
const int* e0)

{
const int e0t = std::max(*e0, 1);
std::string c_label(*f_label);
*v_A = (new dualview_r64_1d_t(c_label, e0t));
*A = (*v_A)->h_view.data();
insert_dualview_reference(A, v_A);

}

Los Alamos National Laboratory

9/1/2020 | 41

Usage Examples

• Which looks something like this:
void insert_dualview_reference(void* host_ptr,

void* dualview_ptr)
{
void** hp_temp1 = (void**)host_ptr;
void* hp_temp2 = *(hp_temp1);
void** dv_temp1 = (void**)dualview_ptr;
void* dv_temp2 = *(dv_temp1);
if (host_to_dualview_map == NULL) {
host_to_dualview_map = new std::map<void*,void*>();

}
if ((*host_to_dualview_map).find(hp_temp2) !=

(*host_to_dualview_map).end()) {
std::cout << "Key already exists!\n";

}
(*host_to_dualview_map)[hp_temp2] = dv_temp2;

}

Los Alamos National Laboratory

9/1/2020 | 42

Usage Examples

• Then when we get to the C++ part of the kernel wrapper (but before
we get to the kernel launch on the device, we could simply:

void* retrieve_dualview_reference(void** host_ptr){
return (*host_to_dualview_map)[host_ptr];

}

• And then we’re off to the races and we have our DualView back
where it matters (at the parallel_X launch sites).

